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Sumnary

This report presents a summary of some of the vork rresented ab a
Colloquium on Linear fquations and Inequalities, neld at Uberwolfach, Ger-
mAy in OQctober 1953, Thics work includes: ar application of the Stiefel-
fatishauser quotient-difference algorithm which involves a novel relation
of an inverse pover series viti a contirnue:d fraction; s method presented by
¥reof. Stiefel applying orthogonal polynomial sets toc the approximate solu-
tlon of sjunsetric, positive—difinit systems; an elementary proof by Dr.
khlers of the inequality{ﬁal)" 4 %._ﬁ'- » where the aj's are positive

i®) Ly

rzal; a descripticn by Dr. Jnger of the Jenns-Friedrich wethod of evaluating

determinants; and by the writer, z variant of the classical Schl¥milch ex-
pansion of an arbitrary function in a series of ;o functions.
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COLLOQUIUM ON LINEAR EQUATIONS

INTRODUCTION

During the week 5 to 10 October 1953, a Colloquium on Linear Equa-
tions and Inequalities was held at the Mathematical Research Institute at
Oberwolfach, in the Black Forest. This Colloquium had the same informal and
pleasant nature characteristic of such meetings at Oberwolfach, and was
attended by about twenty mathematicians, mostly from German and Swiss uni-
versities. A list of the participants is given in Appendix I.

Since a thorough description of the Institute, together with a
detailed review of its history, nas been given in Technical Report ONRI-12-52,
this will not be repeated. Briefly, the Institute is housed in a building
known as the Lorenzenhof, lccated at Oberwolfach-Walke, Schwarzwald, about
forty miles from Freiburg i/Br. The history of Oberwolfach starts with the
organization by Professcr W. S#tes in the middle of 19LL of a Central Mathe-
natics Institute for the purpose of acting as a national research and con-
sultation center. The organization was divided intec two parts, pure mathe-
matics and applied mathematics, and was housed in the Lorenzenhof. The
policy of the Institute as established very early in its existence was to
enploy as maryy good people as possible for research along lines which would
produce mathematics and mathematicians of lasting value irrespective of the
applications of the moment. During the allied occupation, the Institute
surved as a refuge for mathematicians in distress. In the surroundings at
Oberwolfach, their interest in mathematics had an opportunity to be re-
awakened,

Ever since the fall of Germany, the finances of the Institute
have been rather precarious. The receiving of the assignment from the :nili-
tary government to prepare iLhe FIAT reviews on pure mathematiecs helped,
principally in the matter of food, and the Institute has for the last
geveral years received a small annual allocation from the Land Baden,
enough to cover rent and a few basic expenses. The situation of Oberwol-
fach is at present rather clouded and it is not at all certain that it
will continue to get even the nominal support essential for its bare
existence. The reason for this lies in a recent political change in Ger-
many, the consolidation of two of the Linder into one. The former Linder
of Baden and Wirttemberg have been combined into a single one, with, of
course, corresponding changes in the Departments of Education. The new
Ministiry of Education has now to be convinced anew cf the value of the
Institute to the Land and to the Federal Republic.

During most of the week of the Colloquium three meetings a day
were held, one in the morning, one in the late afternoon and one in the
early evening., Some of the twelve or fifteen contributions pres:nted at
Oberwolfach are discussed below. In keeping with the informal and "work-
shop" nature of the meeting, much of the work presented was tentative or
unpolished in character and niuch of the time was spent in critical dis-
cussion., No time limit was ever imposed.



AN APFLICATION OF THE QUOTIENT-DIF “ERENCE A LGORI TH

A quotient-difference preccedure for the investigation of eigenvalue
problems was presented at the 1953 meeting of Gal?! in Aachen by Professor E.
Stiefel of the E.T.li. in Z8rich. This procedure was reportec¢ in detail in
Technical Report ONRL-7€-53., At Oberwolfach, Dr. #{. Rutishauser, who col-
laborated with Prof. Stiefel in the development of the algorithm, presented
an apy.lication of this alporithm to the prcblem of obttaining solutions to

linear equation systems. This application involves the use of continned
fractions.,

The q1°t1ent-d3f1erence sclieme starts with an original set of
numbers designated b' a and follovs the equations

¥ = fu/f

k ~k ~K
4; Win T Wy
—-k k —k'|
Al - [)' + ALH
fL." :- —
If f has the form io., I\‘ , then A, = O . If the E‘ are
p051t1ve real, distifiét, and arranged in crder cf descending magnitude, then

CQ;-¢ )\k as L
The method presented by Iir. Rutishauser is based on a relationship
zfforded by the quotient-dit'ference algorithm between a certain inverse
power series and a continued fraction. This relation is given
! ) }

] -— 2:'-£; = 22. :fl. ¢ 64
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This method may in some cases be useful for the nunerical evaluation of
semi-convergent series.

i

The particular application is to the problem of solving the equa-

tion system
Ax =r
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expressed here in matrix form. A formal solution is

% Y E-A)"
= [NE-QE-A] r = = 4 (_7_\__?:{5__+ .....

convergent if A has only positive real eigenvalues and if N is sufficiently
large. If }:represents a particular element of r: , where

ro——' Y \
Vim = ()‘E"A) ¥

then the corresponding element of x is given by

5 5. Q =&
(A = H:_g —_ = - - =~
Sy = 2 5e N -1 =N\ -

The procedure is to pick a convenient value of A., calculate the
1T , carry out the quotient difference procedure on a particular element,
and to calculate the corresponding element of x through the continued
fraction expression. This continued fraction may be convergent even though
the equivalent inverse power series is not.

As an example, the negative of the Laplace operator is considered
in the usual finite difference form, applied to a square region with homo-
geneous boundary conditions

0-0-0-0-0-0

Oxxxx?¢C -1
0xxxx0 A = =1 L4 =1
Cxxxx0 =1
Oxxxx©

0-0-0-0-0-0

The quantity N is chosen to be equal to 5, and the operator )\E-A is
expressed

1
NE-A =111
1

The distribution r for which a solution is desired is chosen
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for which

0 00O oloo 3 3 3 0
-0loo _ 2220 _ 612 6 3
171110 T2 52521 321113 12 3
oloo 2220 611 6 3
12 21 12 6 . . . ’
32 LO 36 12 : 133, ;
r, 23 55 Lo 21 'g = 156 211 133 .
28 36 32 12 + 155

The quotient-difference procedure is avuplied to the element for which
r Wwas non-zero,

1
1
1 5 5
s #
- _21 126
5 "‘];Z s - 10 5
13 = 2L 25
/s 10 <7
1 126 126 =1 2 315
2 513 £l 275-7-13 % 7
59 5.4l
/13 - 5o
738 738
59 '13-9°'f3_
211/
211 59
and x for that element is expressed
h k3
(-1 i B -2 B E __.
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The successive approximations to the particular element of interest are
] rl 24 fl
s 22 a5, 5)

I{ may Le seen that, with the number of terms taken, no reasonable
arproximation has Leen reached.

X : i
s—;q) 7

An alternate method that might decrease the amount of calculation
required in the quotient-difference algorithm would be to separate the
first m terms, giving

| ’ ' T
. g‘o & : ¥a 'Stwl | {(m Qm _K_'* 9_::
'flh):;\-*:;z*'ﬁ*‘ "'Tﬁ*'x-.“x_ § e A= o

This type of variation to the method is necessary in case one or more of
the elements ir the partial fraction expression are zero (or infinite).

SOLU TION OF SYIHETRIC, FOSI TIVE-OEFINI T SYSTEMS OF EQUATIONS USING
ORTHCGONAL FOLYIHOLDALS

Professor E. Stiefel of the E.T.Hd. in ZHrich presented a method
for obtaining approximate solutions of finite systems of equations in
+hich the natrix is symretric and positive definite. The basic equation
s/slem 1s expressed

kx = k (1)

and the eigenvalues of tne matrix are cresumed to be less than unity and
arranged in order of increasing magnitude

O&N, L NGEA, -~ <A<

Sirce an upper bound to the eigenvalues of a synmetric matriy may be
found, this requirement can alvays be satisfied by an appropriate reduc-
tion. For convenience, the case of distinct eigenvalues is ceoncidered.

An approxitation scheme is envisioned, in which X(m) represents
the ath apyroxitation to the solution, and the mth residual vector is
defined

r(..’l) = k - .:.'.X(m) (2)

Tne general eq:clion for inproving the solution is taken to ve of ihe
forn

x(#1) - xlm) = ¢ (x(n) - x(m-1)) 4 o p(m) (3)



from which the equation for r{i2)  is ovtained

p(m+l) = (l&cm - anA) rlm) - cmr(m'l) (L)

The process is begun by setting
v}
X( = 6 C., =0

-
i

The vector rla) way be expressed in the form

r&m) = R,“(A) k (./)

where R, 1s 2 polynomial orf derree 1 in A. It may be noted that
,{0)=1. If the vector k is expressed

k= ke +« ke + -0 thkat, (6)
in terams of the noraalized eigenvectors efs the vector r(m) is
expressed

i"(m‘ = R?h\kq) i’\.'e‘. LA + Rm(kn\ k\'\en (7)

As an example tne simple iteration scheme corresponding to the
expansion

Ar‘ = :Z;\(E;-/\)”‘

is considered. Tnis fits into the peaerel ccheme with cm 20, am< 1.
The polynonizl R, is given siumply

RN = (=N

It is clear by considering 2 plot of (A} that this gives rather pocr
approximations for a yiven crder of iteration unless all the eigenvalues
are close to unity.

Rom
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It is clear that an approach using one of the well-known sets of
polynomials related by recurrence relations and giving good representations
of other functions within a fixed interval may be used to devise an intera-
tion scheme. As an example, with a lower bound N\, to tne eigenvalues,
the Tthebycheff polynomials may be used, with

L+ N~ 2N
Trh( 1=Ap

Rm(?\\ = l"A")

-

m “:[o

These functions are orthogonal over the interval Avtx>1.with the weight-
ing function

- |
Y = TG

f ihe eigenvalues were known, a procedure which led to a residual
fanction R(N) | iceh had zeros at the DipenValues would yield an exact solu-
tion., This mould he bLest dong f{or a given k by constructing a set of
orthogonal polynomials for RV j 7ith the weighting furction

o(n) = K SANY & - - - ki SO o)

vhere & denotes the Dirac delta function, by means of which R(n)(A) would
actomatically possess the desired properties. But the orthogonal property

‘ « 15)
(RoRmEMA = 0 = (" r) s

is equivalent in this case to the corresponding orthogonal properties
for the residual vectors themselves. Thus the equations (L), tcpether
with the orthogonality conditions

{rm+1) r(m\)

(r <

(r&r\an\ r(\m-l)) = 0 (10)

from which the values of am and cm may be determined, are arle to
accomplish this construction vith no necessity for specific information
about the actnal eigenvalues., This is the principal result of Stiefel's
contribution. The double orthoponality condition, torether with Eq. (L)
ensures orthogonality in general. The actual soluticn is obtained through

Eq. (3).
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It may be le=sired to use approximate information about the eigen-
value distribution and about the vector k 1in place of the foregoing
specialized procedure. If the dsnsity of the eigenvalue distribution is
given by F(?\)and the component distribution of the vector k 1is given by
k(N ), the proper choice of density function in the orthogonal polynomial

procedure is
3
e\ = pk -

With suitable choices for ?(AX several of the well-known systems of
orthogonal polynomials are obtained.

COUph RISON OF EQUATION-SOLVING METHODS

Dr. H. Unger of the Institut fHr Praktische Mathematik in the
T.H. at Darmstadt discussed a number cof standard methods for solving the

equation system
Ax:O.

in matrix notation. The general conclusion presented was that the Gauss
algorithm, by which A 1s factored into two triangular matrices

A:QG‘ Q of form <q
G of form t
requires the least number of numerical operations.,

Unger continued with 2 discussion of some of the variants of the
Gauss algorithm.

(a) If the soluticn obtained is approximate, an improvement may
be obtained by obtaining the residual

do = Ax_-a

solving the incremental equation

A AXQ = .-Clﬁ

using the approximate triangular matrices, correcting x, and repeating
as necessary.
(b) The splitting of A may be accomplished using diagonal matrices

between the triangular matrices, in crder to decrease the number of divi-
sions which need to be carried out in a numerical inversion.




s 1

(c) The Gauss algorithm may be carried out with submatrices in
place of the usual elements; this requires the inverses of the submatrices
lying along the diagonal, themselves cbtainable ty the Gauss algorithm.

(d) If & .sumber of solutions involving the same matrix are to

be obtained, it i casier to carry out the calculation in terms of the
inverses of the triangular matrices

“ -\
X, = (;|() a;

than to calculate A~l and obtain X4 directly.

ELE'ENTARY FROOF OF AN INEQUALITY

Dr. G. Ehlers of the University of Kiel pave a simple proof of
the inequality

== |
E\Ja‘u““‘"ah §- R(’a| ral"f et “C\“)

where the a's are all positive real. Noting that the expression is
homogeneous, it may be required that

Qly -+ = |\
and it is then necessary to prove that
Oy rQet === +Gy = 1N
The proof follow. the metheod of induction.
Lssnming the inequality holds for n and that
&‘u‘. .. "Onan-u = A

then
A Qa4 Gy + - +QnFlhnn 2N
where a, and &, are any two out of the set of a's. Choosing one of

these greater than one and the other less than one (a{i;l is a trivial
case);

(Gz."ﬂ(ﬁ.- ‘) é 0

combining the two inequalities yields

(A,+Q;§- ‘‘‘‘ +O“+C\n..\ '2..‘ N+l



SOLU TION OF LINBAR EQUATIONG BY COMPLEX CONTOUR INTEGRALS

Dr. G. Ehlers presented the solution of the equation system

jé:
where the elemean involved are square matrices and the matrices B
are commutable, The solution is

l'xml ff f‘ZA z; Y & B izl zc.\:%.-

vhere ﬁ' goes around the entire spectrum of Bi but not around any singularity
of s

Z.A‘.l.'.

THE JENNE-FRIEDRICH WETOD OF EVALUATING DETERKINANTS

Dr. He Unger of Darmstadt described a method for the evaluation
of determinants which, existent in less available literature, is relatively
unknown, Tha original reference is a paper by K. Friedrich, Stuttgart,
1930, or in a Sonderabdruck aus Zeit. f. Vermess.-Wesen, 1930. A second
reference is by W. Jenne, "Zur AuflBsung linearer Cleicuangs-SJsteme"
hstronomische Nachrichten 278, 73 (1949). The method is based upon a
lattice-like graphical representation of the terms of a determinant.

Each diagonal term of the wmatrix or determinant is represented
by a point, for example the term a,, by the point 2. Each conjugate
pair of off-diagonal terms is represented by a line joining the corres-
ponding polints, with each term associated with a direction along this
line; for exaiple,

. au—-) "
/ Q< 2

Additional notation is needed. Parentheses are used to denote
a complete diagonal subdeterminant (onc whose diagonal terms are diagonal
terms of the original determinant) cr a single diagonal term. The expres-
sion

'V.u17....’(>\rw — Clr1,ahp" SR80 DREHE QatKCLRP-

is defined also. lNote that lr\\ = am‘ = (p X

=-10-




The determinant is considered to be evaluated with respect to a certain
point, B , and is given by the expression

al pom.
D= 7 jpwmpl R Y
‘) - ‘“1 hr“ “:"’:'W)‘:l" (—‘
r=i

where r 1is the number of terms in the l | expression, and R 1is the
diagonal sub-determinant with terms in @,#,---N missing. The summation
is taken over all permutations of M with any number of other indices
(including none).

Some clarification may be brought about by an example. The
complete L x L4 determinant

1 %12 %13 2y
%21 %22 23 P
b %31 %32 %33 8y
i %2 w3 A

is denoted by its lattice representation

} 2
4 3
Evaluating with respect to the point 2,

7 = @ (lv3)

= \212"(-3——‘:) = '232\(1___'3) - ‘2’42\(:—";'3)

+ J2132) L)+ \2312) (L) 4\ewe) (3)
4+ Rz} ) o+ leae) () 4 \as2) (1)
— \213L2) ~ | 21132 —\23152]  —~\23L12)

~ |23z} —\aw2]

", 5



It is evident that this procedure presents no attraction over
conventional nsthods in the general ~ase. Its only claim to usefulness
is for cases in which certain of the off-diagonal pairs ere zero, in
which certain of the connecting lines of the lattice are broken. In the
example above, if 831=a31= 8)7=3),=0, the results quoted abovae take

the form

= (WM —4)
~laml (3=4) —]a3al (V) = lau21 () (3)
+12342) (0 + 124321 (),

If the expansion is made relative to the point 1, the expression is

sinmply
D = (l)(’a&.&*) — () (—4)

In the particular case of the determinant of a Jacobi matrix the lattice
has the simple form

\ 1 3 4 5 n-l n
[ o —— 5 —& P i .

In a comparison of the Jenne-Friedrich Lattice Method applied
to the treatment of matrix and determinant problems with the GCauss
algorithm, Dr. Unger pointed out that even in the case of a Jacobi matrix
the Gauss procedure is better. Only in the case for which the sub~ and
super-diagonal terms are all 1 or -1 does the Lattice Method show
any nuzerical advantage. Interest in the method must probably depend
on the conceptual picture it gives of a determinant and the fact that
it furnishes a numerical expansion symmetric with respect to the diagonal,

NEO-SCHLUMIICH SERIES

Dr. W, llayes of ONR London presented a variant of the classical
Sch¥lmilch expansion of an arbitrary function as a series of Bessel
functions., 1In place of the classical variation oF the argument pro-
portional to an integer v the variation is as kt4+m? where k
is constant, Series of this type appear in the theory of solutions of
the equation &, + &y, ~ d-k'd =0 which are periodic (of period
21T , for example) in the varlable x,

The function to be expanded is

= 00T (ke) + o Lo (S ) (0 x &™)
wezi

<12
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the principal problem being to evaluate the coefficients a,
of the function f(x). If the function

gy = Fae+ Zamcos MR

+
3
[wd
(U]
4
¢ ]

is known, the coefficients are then given directly by
uiy
a £~ -
O = g G k) Cos vt LY
fﬁ' o

A modificaticn of Parseval's integral shows that the functions f and
g are related by the equation

Wi
fo = %( g(xsm8) os(kxwesd)dO
(cf. Watson, G. N., "Theory of Bessel Functions®, Cambridge, 19L&, Sect

2.2, 19.1, and 19.41), and the solution of this integral equation is
L%

qlxy = fioy wih kx + Xjf'(xs'm@) wsh (k% cos ) d¢
o

n

Thigs determination of g in terms of f completes the problem. Re-
quirements for convergence are the same as for classical Schl8milch
series.

It may be noted that k may be imaginary, whereby in essence
the cos and cosh functions in the above analysis are exchangsd. In the
Bessel function series a finite number of terms are then expressible with
the modified Becssel function IO in place of Joo

As with the classical Schl®milch series, a null series may be
ohtalned. This series is

«©
T et o D iy T .
5 Jo(kx) + 2 (-9 Dol IRt 7)) = © DL X LT
wmo

It may be again noted that k need not be real in this seriss.

~il3=
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